• Users Online: 114
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 45  |  Issue : 2  |  Page : 92-98

Hepatoprotective activity of quercetin against paracetamol-induced liver toxicity in rats

Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt

Correspondence Address:
Amel L Elsawaf
Department of Physiology, Medical Research Institute, Alexandria Univeristy, Alexandria, 21561
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/tmj.tmj_43_16

Rights and Permissions

Background Paracetamol (PCM) overdose induces hepatotoxicity in both humans and experimental animals. The pathogenesis and progression of PCM hepatic toxicity are associated with free radical injury and oxidative stress, which could be partially attenuated by antioxidants and free radical scavengers. Aim The present study was undertaken to examine the effects of quercetin on PCM-induced hepatic toxicity in rats. Material and methods In this experimental study, forty adult male rats were divided into four groups: control, quercetin, PCM groups, and the protective group that was pretreated with quercetin orally [50 mg/kg body weight (b.w.)] daily for 16 days and thereafter received both quercetin (same dose) and PCM (500 mg/kg b.w.) for another 5 days. Twenty-four hours after the administration of PCM, the rats were killed to measure serum hepatotoxic markers, levels of tumor necrosis factor-α, and oxidative stress biomarkers. Results Oral administration of PCM (500 mg/kg b.w.) for 5 days resulted in a significant elevation of liver enzymes in serum such as aspartate transaminase, alanine transaminase, alkaline phosphatase, and total bilirubin, and in levels of tumor necrosis factor-α as well as reducing hepatic total protein and albumin concentrations when compared with the results in the control group. As regards oxidative stress biomarkers, there were increased tissue levels of malondialdehyde and decreases in the activity of liver enzymes [superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-s-transferase] in the group treated with PCM. All of these results were ameliorated by coadministration of quercetin. Conclusion These results suggest that the protective role of quercetin in the prevention of PCM-induced hepatic toxicity in rats was associated with a decrease of oxidative stress in hepatic tissues. However, clinical studies are warranted to investigate such an effect in humans.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded753    
    Comments [Add]    
    Cited by others 11    

Recommend this journal